Q. Plot the line spectrums of x(t) =12 + 6sin (140πt +30°) - 9cos(80πt-70°).
Solution:
Let’s Analyze and Plot the Line Spectrum of
x(t) = 12
+ 6sin(140πt+300) − 9cos(80πt−700)
Step 1: Convert all terms to cosine form
Use the identity: sin(θ)
= cos(θ−900)
So,
6sin(140πt+300)
= 6cos(140πt−600)
−9cos(80πt−700)
= 9cos(80πt+1100)
Thus, x(t) = 12 + 6cos(140πt−600)
+ 9cos(80πt+1100)
Step 2: Frequencies, Amplitudes, Phases
Term |
Frequency (Hz) |
Amplitude |
Phase |
12 (DC) |
0 |
12 |
0° |
6cos(140πt−600) |
f=70 |
6 |
-60° |
9cos(80πt+1100) |
f=40 |
9 |
+110° |
We split each cosine into two spectral lines at ±f with half the amplitude.
Now, let's plot
the magnitude and phase spectrum.
Magnitude
Spectrum:
|
Phase Spectrum:
|
No comments:
Post a Comment